Power series and neural-net computing

نویسنده

  • Karl-Theodor Kalveram
چکیده

Kalveram, KTh., Power series and neurat-net computing, Neurocomputing 5 (1993) 165-174. A power series expansion is represented by a threeJayer feedforward network, the number of nodes in the hidden layer conesponding to the number of terms retained in the series, and the synaptic weights in the hidden layer representing the exponents used. The activation functions addrcssed to input, hidden and output nodes are log, anti-log and linear. The training rules applied to determine the weights of the output layer, that means the optimal power series coefficients, are the ordinary delta rule and a least squares based simultaneous leaming rule called lSQ-ruIe. The performance of this network is compared to a three-layer network with the same number of nodes but sigmoidal activation functions, tmined by backpropagation. With respect to the selected four functions to be approximated, the delta rule yields an output error considerably less than the enor of the sigmoid network. Best results, however, are obtained combining the power network with the tSQ-ruIe. In this case, 'performance related to number of training trials' is-on avgrage-about 30,(X)0 times better, compared to backprcpagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values

Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial  neu...

متن کامل

Formal approach on modeling and predicting of software system security: Stochastic petri net

To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each...

متن کامل

ارزیابی عملکرد مدل‌های محاسباتی نرم در تخمین ارتفاع امواج در بندر انزلی

Wind waves are one of the important, fundamental and interesting subjects in port and coastal engineering. Thus, within years, different methods such as experimental methods, numerical modeling and soft computing methods have been employed to estimate the wave parameters. In this study, waves height in Anzali port is predicted using soft computing models such as multivariate adaptive regressi...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Effect of Distributed Power-Flow Controller (DPFC) on Power System Stability

Distributed flexible AC- transmission system (D-FACTS) is a recently advanced FACTS device with high flexibility and smaller size. The DPFC can control power flow in transmission lines, regulate bus voltages and it can also enhance stability margin in power grids. Adaptive-neural network-based fuzzy inference system (ANFIS) combines features of artificial neural network and fuzzy controller. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1993